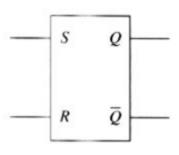


Biestáveis


Circuitos Digitais II Prof. Fernando Passold

Biestáveis

Biestável RS básico:

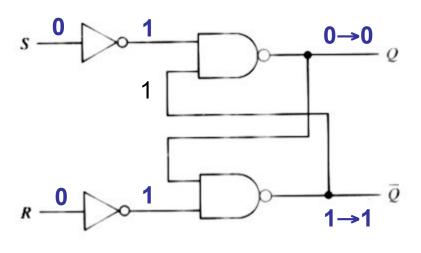
a) Circuito interno com portas NOT e NAND.

b) Símbolo do Biestável RS.

Condições de "repouso" (mantendo estado):

Condições iniciais: Próximo estado?

$$S=0$$
 Q(t)=0 \longrightarrow Q(t+1)=?


(a)

Α	В	AND	NAND
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	0

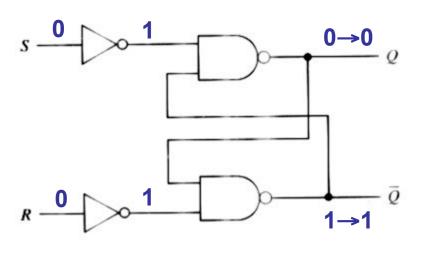
Condições de "repouso" (mantendo estado):

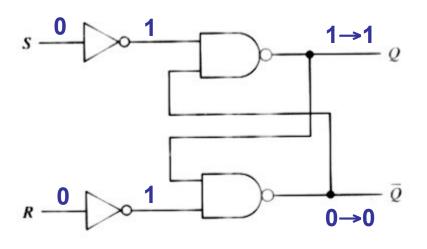
Condições iniciais: Próximo estado?

$$S=0$$
 Q(t)=0 \longrightarrow Q(t+1)=?

(a)

Α	В	AND	NAND
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	0


Condições de "repouso" (mantendo estado):


Condições iniciais:

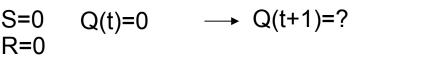
Próximo estado?

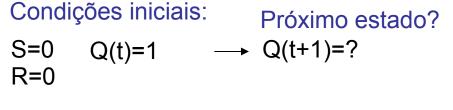
$$S=0$$
 Q(t)=0 \longrightarrow Q(t+1)=?

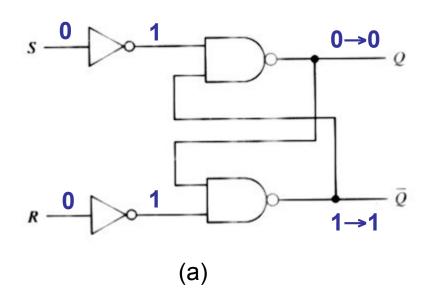
Condições iniciais: Próximo estado? S=0 $Q(t)=1 \longrightarrow Q(t+1)=?$ R=0

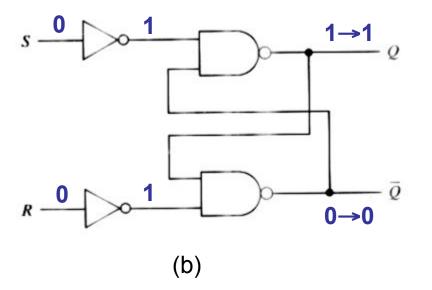
(a)

Α	В	AND	NAND
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	0

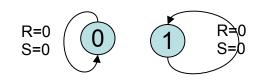

(b)


Condições de "repouso" (mantendo estado):


Condições iniciais:


Próximo estado?

$$S=0$$
 $Q(t)=0$ \longrightarrow $Q(t+1)=$



Conclusões:

Set	Reset	Q(t+1)	Obs:
0	0	Q(t)	Mantêm estado. Não muda.

Setando o biestável:

Condições iniciais:

$$S=1 \qquad Q(t)=0 \qquad \longrightarrow \qquad Q(t+1)=?$$

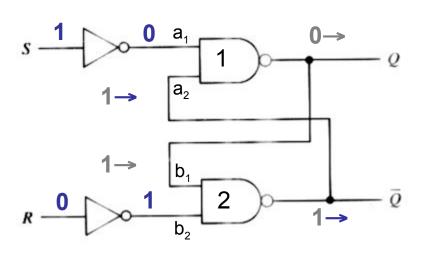


Diagrama no tempo:

	_		
S	\times	1	
R		0	
a ₁	\times	0	
a_2	\sim	1	
b₁	\times	0	
b_2	\times	1	
Q		0	
Q		1	
•			

(a)

Obs: análise supondo que porta 1 é mais rápida que a porta 2.

Α	В	AND	NAND
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	0

Setando o biestável:

Condições iniciais:

Próximo estado?

S=1 Q(t)=0
$$\longrightarrow$$
 Q(t+1)=?

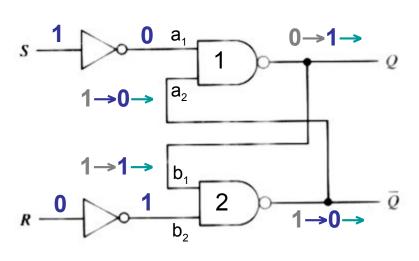


Diagrama no tempo:

	9			τορ.σ.	
S	>>	1			
		0			
a ₁		0	0		
a_2		1	1		
b_1		0	1	<u> </u> 	
b_2	\searrow	1	1	-	
Q		0	1		
0		1	1	_	
7			: :		

(a)

Obs: análise supondo que porta 1 é mais rápida que a porta 2.

Α	В	AND	NAND
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	0

Setando o biestável:

Condições iniciais:

Próximo estado?

S=1
$$Q(t)=0$$
 \longrightarrow $Q(t+1)=?$ R=0

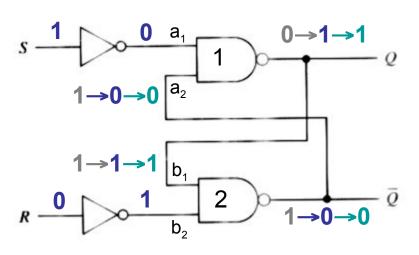


Diagrama no tempo:

	J -	_			
S	\geq	1			
R.	\searrow	0			
a_1	\geq	0	0	0	
\mathbf{a}_2	\geq	1	1	0	
b_1	\times	0	1	1	
b_2	\boxtimes	1	1	1	
\mathbf{Q}		0	1	1	
$\overline{\hat{0}}$		1	1	0	
Υ.					

(a)

Obs: análise supondo que porta 1 é mais rápida que a porta 2.

Α	В	AND	NAND
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	0

Setando o biestável:

Condições iniciais:

Próximo estado?

$$S=1 \qquad Q(t)=1 \qquad \longrightarrow Q(t+1)=?$$

$$R=0$$

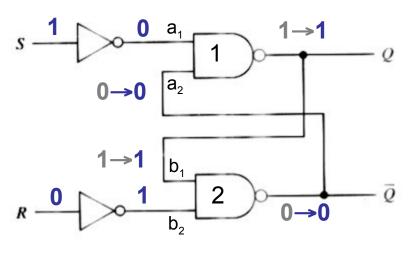
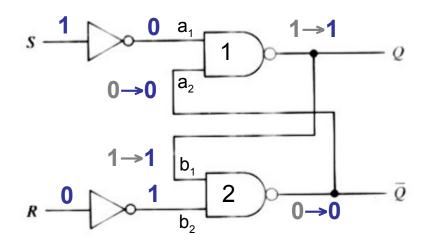


Diagrama no tempo:

		1	•	•	•
S	\boxtimes	1			
R	\searrow	0			
a₁	\times	0	0		
\mathbf{a}_{2}	\geq	0	0		
_			1		
\mathbf{D}_1	\boxtimes	I	<u> </u>		
b_2	\geq	1	1		
Q		1	1		
$\stackrel{\underline{\vee}}{\sim}$			_		
()		0	0		
7					

(b)

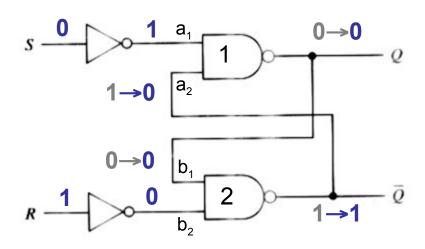

Obs: análise supondo que porta 1 é mais rápida que a porta 2.

Α	В	AND	NAND
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	0

Setando o biestável:

Condições iniciais: Próximo estado? S=1 Q(t)=0 \rightarrow Q(t+1)=? R=0 Condições iniciais: Próximo estado? S=1 Q(t)=1 \rightarrow Q(t+1)=?

Conclusões:


Set	Reset	Q(t+1)	Obs:
0	0	Q(t)	Mantêm estado.
1	0	1	Set

S=0 R=0 S=0 R=0 S=1 R=0

Resetando o biestável:

Condições iniciais: Próximo estado?

$$S=0$$
 $Q(t)=0$ \longrightarrow $Q(t+1)=?$ $R=1$

(a)

Obs: análise supondo que porta 1 é mais rápida que a porta 2.

Α	В	AND	NAND
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	0

Resetando o biestável:

Condições iniciais:

Próximo estado?

$$S=0$$
 $Q(t)=1$ \longrightarrow $Q(t+1)=?$ $R=1$

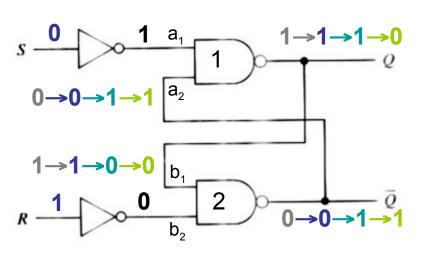


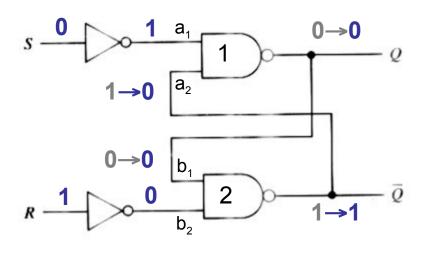
Diagrama no tempo:

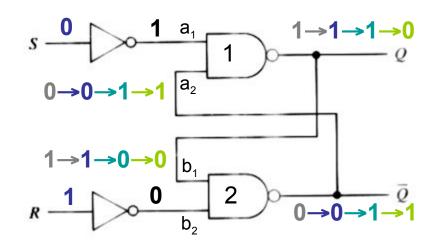
	_		:		•	
S	\geq	0				
R	\sim	1				
a_1		1	1	1	1	
a_2		0	0	1	1	
b₁	\geq	1	1	1	0	
b ₂	\searrow	0	0	0	0	
Q		1	1	1	0	
0		0	0	1	1	
7						

(b)

Obs: análise supondo que porta 1 é mais rápida que a porta 2.

Α	В	AND	NAND
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	0

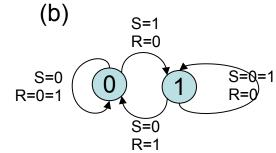

Resetando o biestável:


Condições iniciais:

Próximo estado?

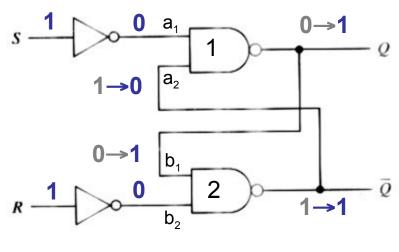
$$S=0$$
 Q(t)=0 \longrightarrow Q(t+1)=?

Condições iniciais: Próximo estado? S=0 Q(t)=1 \longrightarrow Q(t+1)=?



(a)

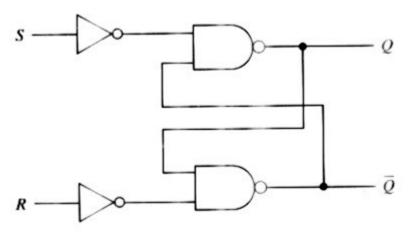
Conclusões:


Set	Reset	Q(t+1)	Obs:
0	0	Q(t)	Mantêm estado.
1	0	1	Set
0	1	0	Reset

Setando e Resetando simultaneamente:

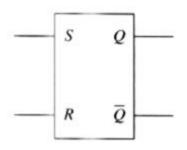
Condições iniciais: Próximo estado?

S=1
$$Q(t)=0$$
 \longrightarrow $Q(t+1)=?$ R=1

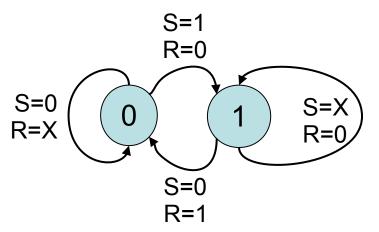


	_	1
1	2	١
1	a	ı
١,		,

Α	В	AND	NAND
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	0


Biestável básico RS

Conclusões finais:

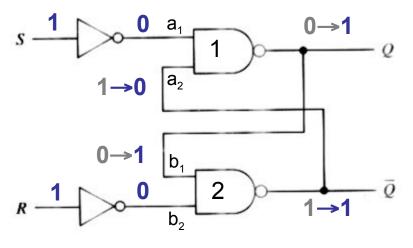


- a) Circuito interno com portas NOT e NAND.
- c) Tabela funcional:

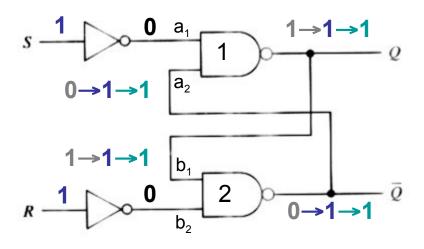
Set	Reset	Q(t+1)	Obs:
0	0	Q(t)	Mantêm estado.
1	0	1	Set
0	1	0	Reset
1	1	1	Não utilizado* ($Q=\overline{Q}$)

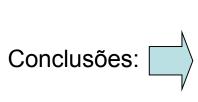
- b) Símbolo do Biestável RS.
- d) Diagrama de estados:

Setando e Resetando simultaneamente:


Próximo estado?

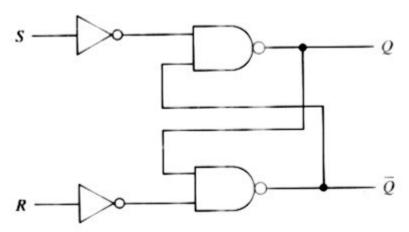
$$\rightarrow$$
 Q(t+1)=?




Próximo estado?

S=1
$$Q(t)=1 \longrightarrow Q(t+1)=?$$
 R=1

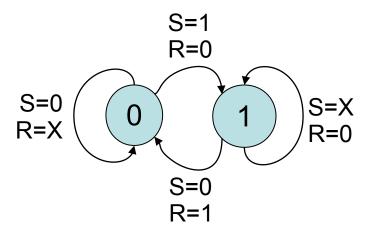
(a)



Set	Reset	Q(t+1)	Obs:
0	0	Q(t)	Mantêm estado.
1	0	1	Set
0	1	0	Reset
1	1	1	Não utilizado* (<i>Q</i> = Q)

S=0 R=0=1 R=X S=0 R=1

Biestável básico RS



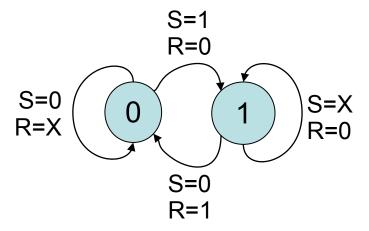
a) Circuito interno com portas NOT e NAND.

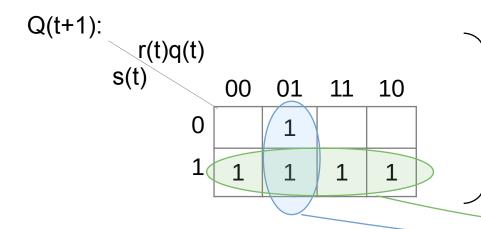
c) Tabela funcional:

Set	Reset	Q(t+1)	Obs:
0	0	Q(t)	Mantêm estado.
1	0	1	Set
0	1	0	Reset
1	1	1	Não utilizado* ($Q=\overline{Q}$)

d) Diagrama de estados:

e) Equação de transição:

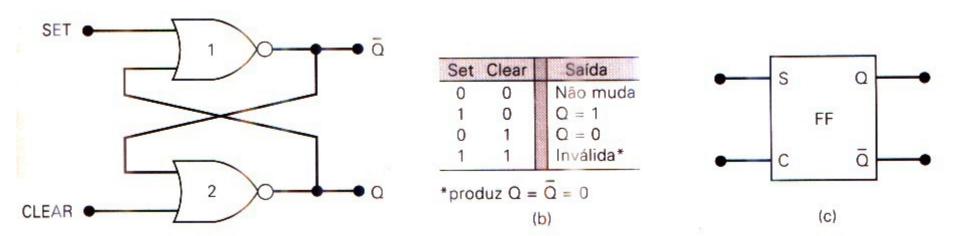

$$Q(t+1)=S(t)+\overline{R(t)}\cdot Q(t)$$


Biestável básico RS

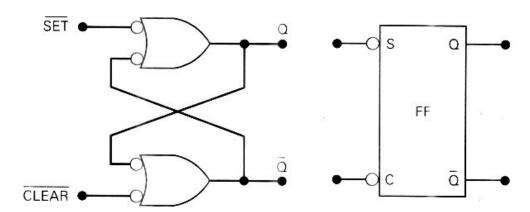
Dedução e. de transição:

Set	Reset	Q(t+1)	Obs:
0	0	Q(t)	Mantêm estado.
1	0	1	Set
0	1	0	Reset
1	1	1	Não utilizar: $Q(t+1) = \overline{Q}(t+1)$

d) Diagrama de estados:

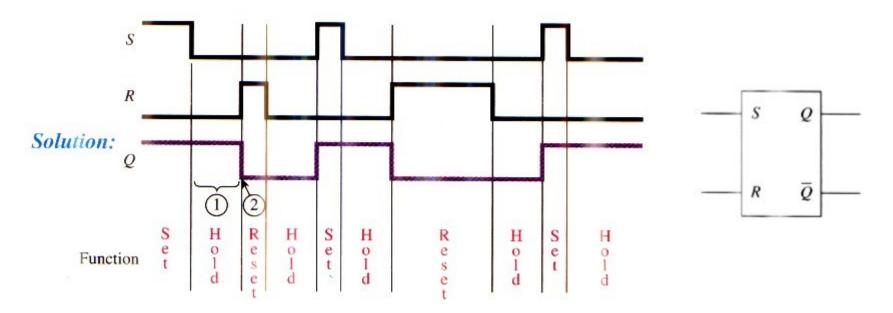


e) Equação de transição:

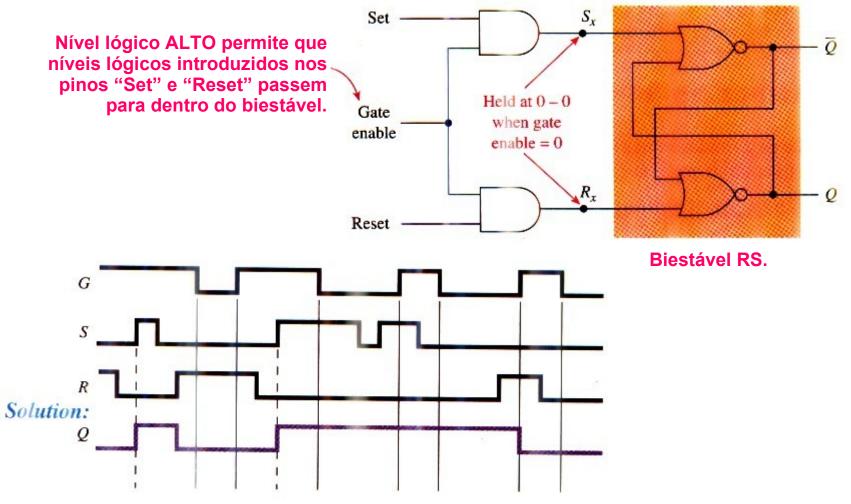

$$Q(t+1)=S(t)+\overline{R(t)}\cdot Q(t)$$

Outros biestáveis RS:

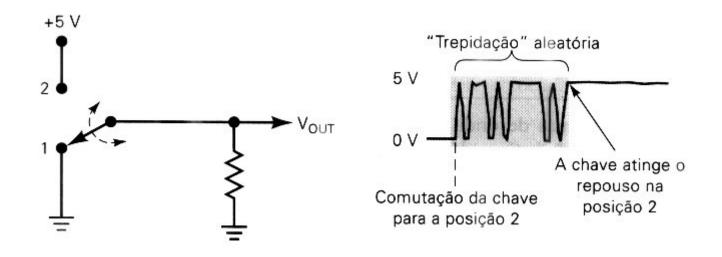
Biestável RS básico com portas NOR:


Biestável RS com portas NOT+OR:

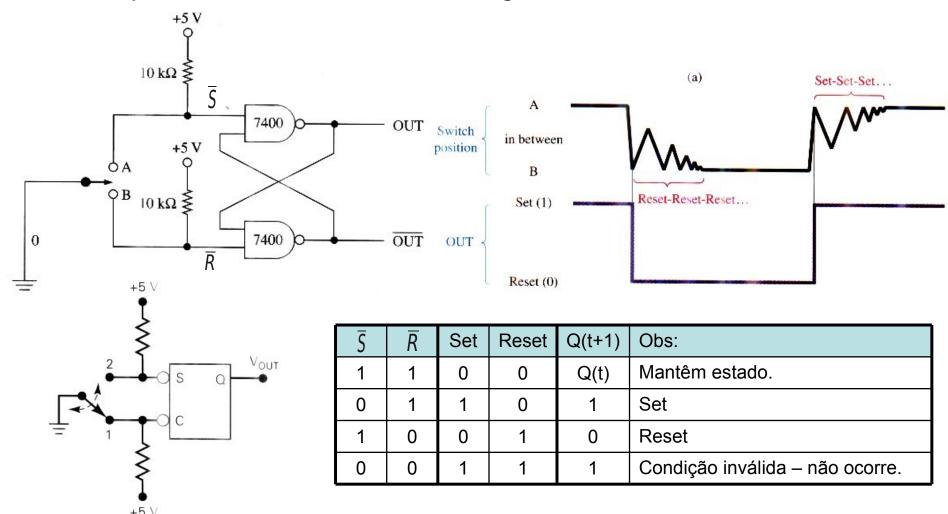
Biestável RS:


Exemplo de uso:

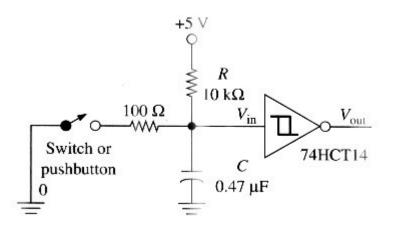
Set	Reset	Q(t+1)	Obs:
0	0	Q(t)	Mantêm estado.
1	0	1	Set
0	1	0	Reset
1	1	1	Condição inválida


Latch RS

Biestável com entrada de ENABLE:


Aplicação de biestável RS

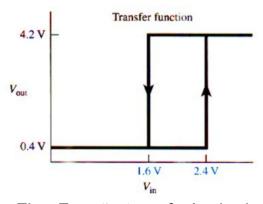
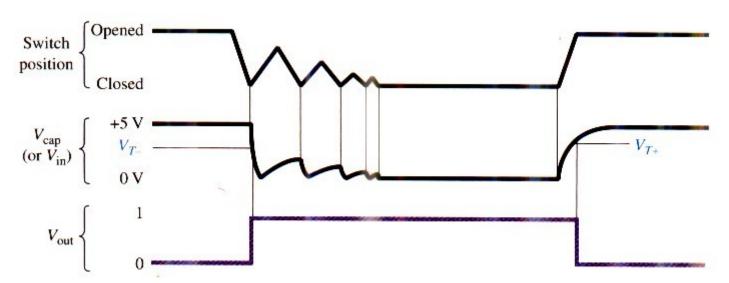
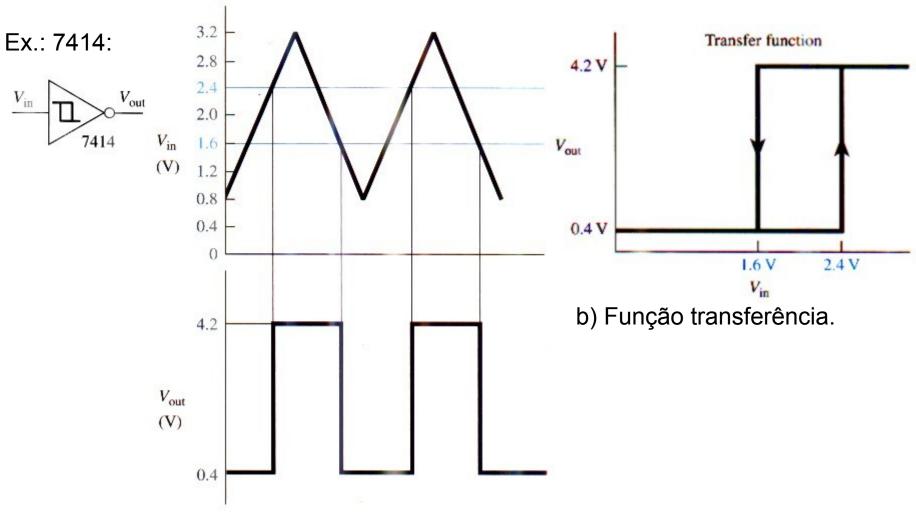
Circuito problema do efeito "bouncing" de chaves:

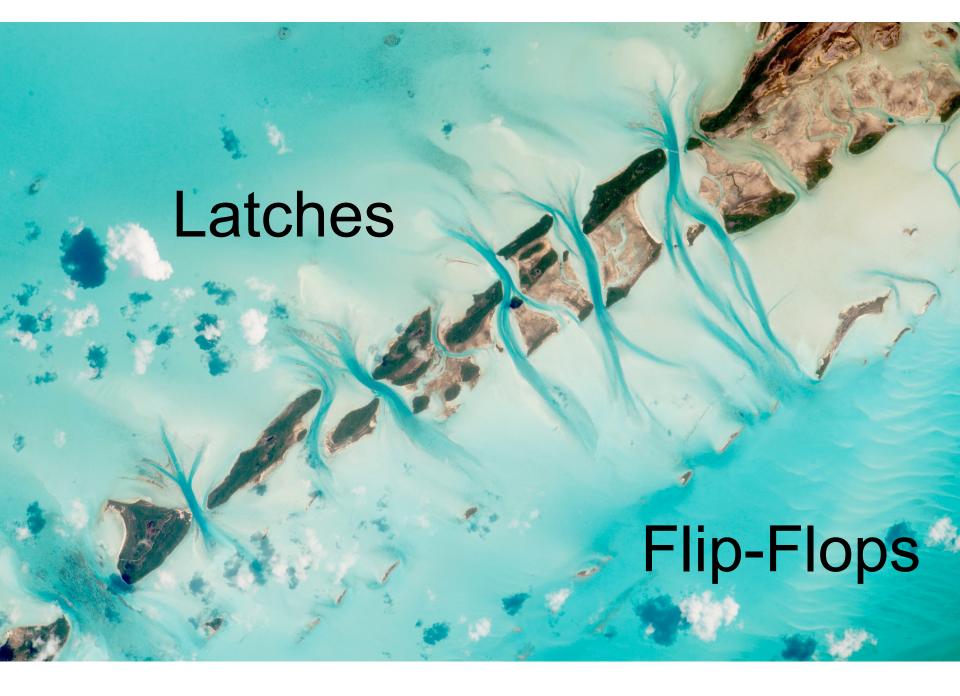

Aplicação de biestável RS

Circuito para eliminar efeito "bouncing" de chaves:

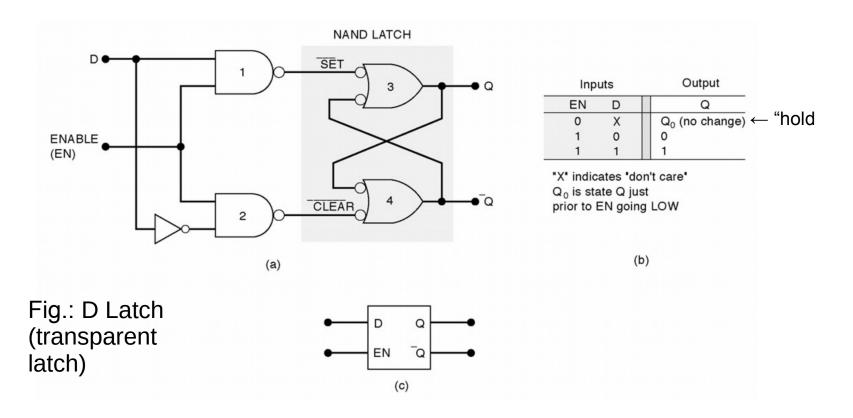
Circuitos de Debouncing

Outro circuito empregando Schmitt-trigger:

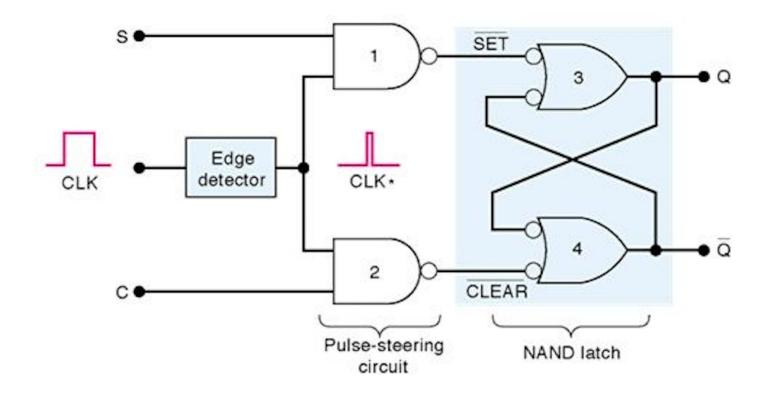





Fig.: Função transferência do Schmitt-trigger.

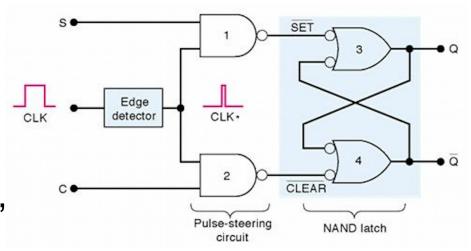
Operação de um Schmitt trigger:

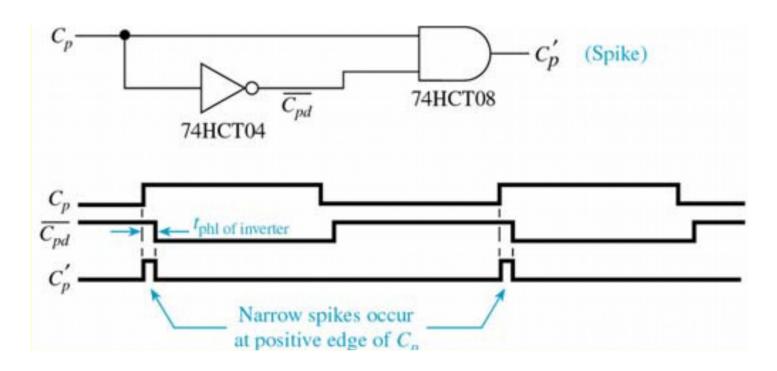

a) Simulação de Schmitt-trigger.

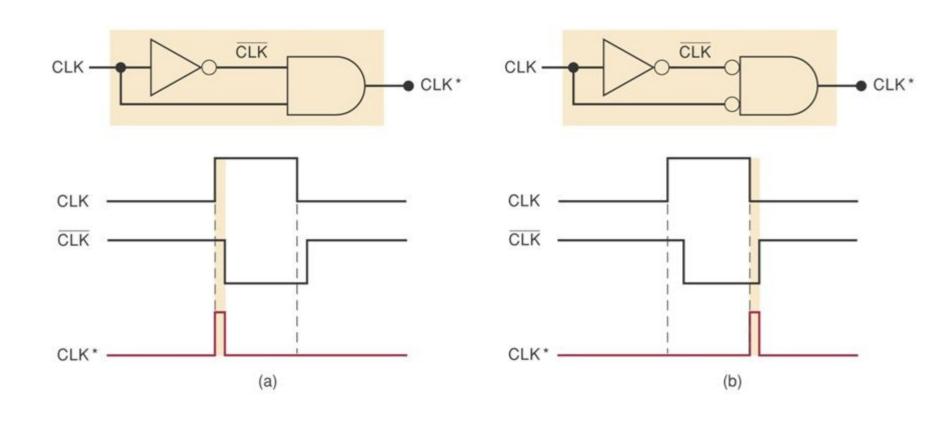
Biestáveis 11/03/19 <a>⊅ pág 27


Latches x Flip_Flops: Biestáveis

 Latch: entrada "extra" (Enable) sensível à nível lógico:


Latches x Flip_Flops: Biestáveis


 Flip-Flop: entrada "extra" (Clock) sensível à borda do sinal (nesta entrada):


Detector de bordas

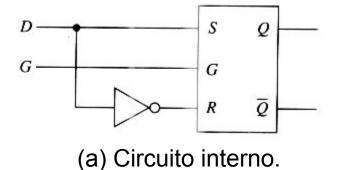
"Positive edge-detection circuit"

Detectores de Bordas

Parâmetros no tempo:

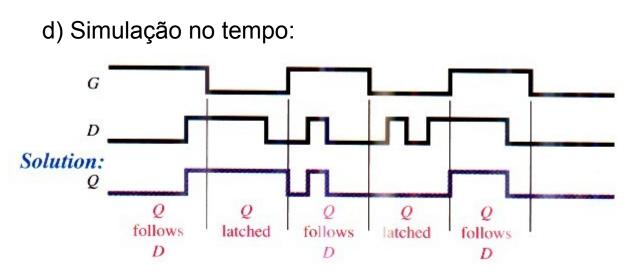
Latch Tipo D:

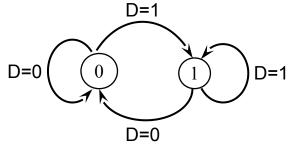
Tabela verdade do RS:


Set Reset Q(t+1) Obs:

0 0 Q(t) Mantêm estado.

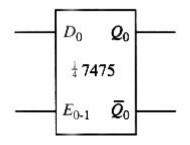
1 0 1 Set


0 1 0 Reset

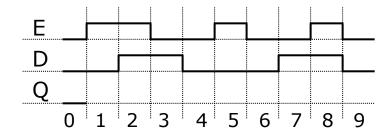

1 1 1 Condição inválida

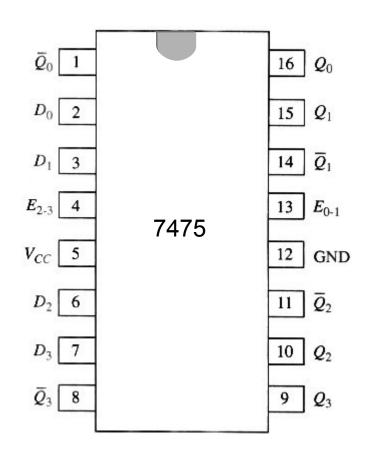
b) Tabela verdade do Latch D:

G	D	Q(t+1)	Obs:
0	X	Q(t)	Mantêm estado.
1	0	1	Reset
1	1	1	Set



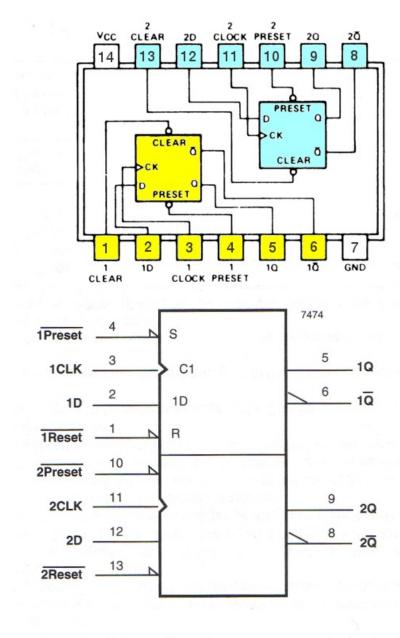
c) Diagrama de estados.





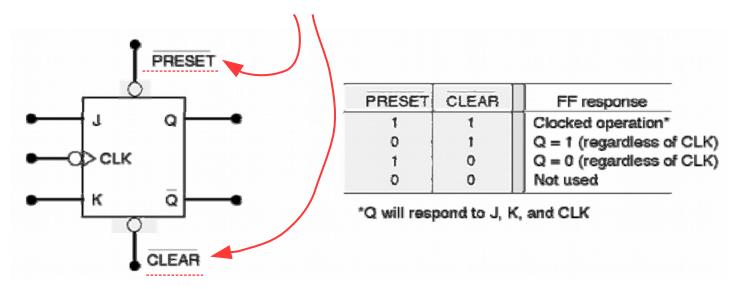
CI comercial:

Completar:

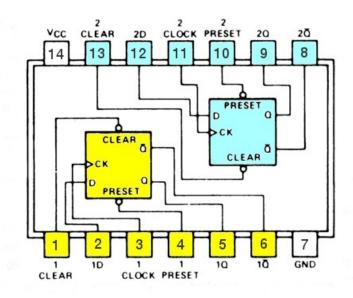


Biestáveis D comerciais

• 7474: Flip-Flop D,


• 7475: Latch D,

74LS74 Flip-Flop

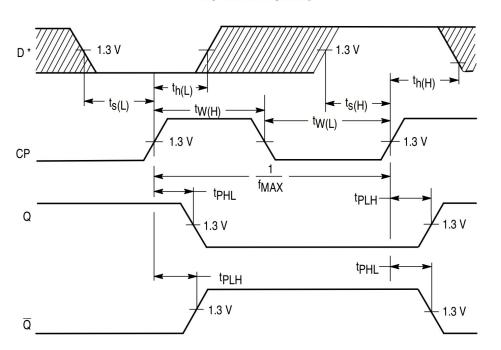

Biestáveis 11/03/19 <a>⊅ pág 36

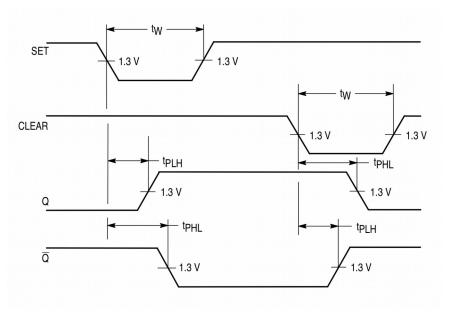
Entradas assíncronas...

- Num FF-D ou FF-JK, as entradas D, J ou K são ditas "síncronas" porque seu efeito na saída do FF depende da sincronização com o sinal de "clock".
- Entradas assíncronas (PRESET, CLEAR): sobre-escrevem as entradas síncronas; operam de forma independente das entradas síncronas e do sinal de clock e são usadas para ajustar ("forçar") um FF para o estado 0 ou 1 em qualquer instante de tempo (principalmente quando recém se alimenta um circuito, para garantir sua condição inicial).

74LS74 Flip-Flop

AC CHARACTERISTICS (T_A = 25°C, V_{CC} = 5.0 V)


			Limits				
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions	
fMAX	Maximum Clock Frequency	25	33		MHz	Figure 1	.,,
^t PLH	Clock, Clear, Set to Output		13	25	ns	Figure 1	$V_{CC} = 5.0 \text{ V}$ $C_{L} = 15 \text{ pF}$
^t PHL	Clock, Clear, Set to Output		25	40	ns	Figure	


AC SETUP REQUIREMENTS $(T_A = 25^{\circ}C)$

		Limits					
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions	
^t W (H)	Clock	25			ns	Figure 1	
tW(L)	Clear, Set	25			ns	Figure 2	
	Data Setup Time — HIGH	20			ns	Eiguro 1	V _{CC} = 5.0 V
t _S	LOW	20			ns	Figure 1	
^t h	Hold Time	5.0			ns	Figure 1	

Parâmetros AC

AC WAVEFORMS

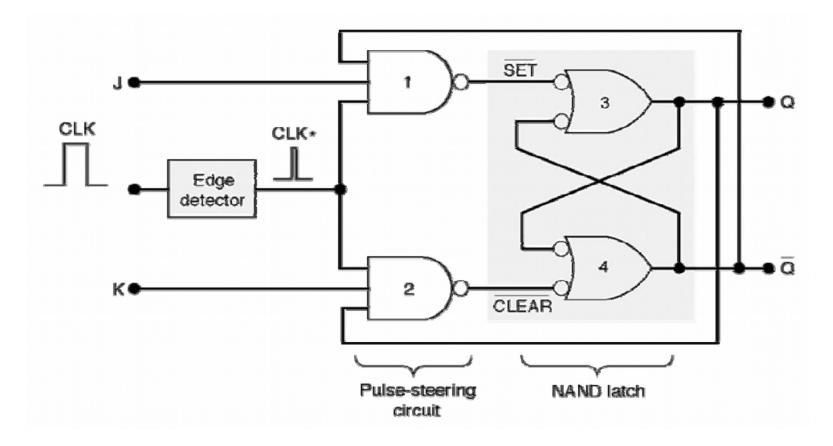
*The shaded areas indicate when the input is permitted to change for predictable output performance.

 t_p = propagation delay;

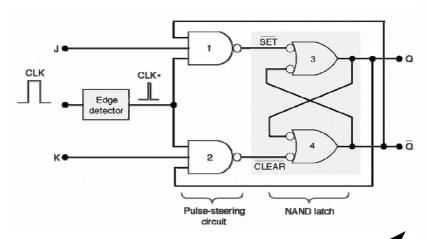
 t_s = setup time;

 t_h = hold time;

 t_{w} = assyncronous times.

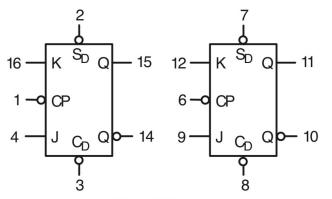

IVICAC					,	
^t PLH	Olaski, Olaski, Ostanit	13	25	ns	Figure 1	$V_{CC} = 5.0 \text{ V}$ $C_{I} = 15 \text{ pF}$
^t PHL	Clock, Clear, Set to Output	25	40	ns	Figure 1	- L

AC SETUP REQUIREMENTS (T_A = 25°C)


			Limits				
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions	
tW(H)	Clock	25			ns	Figure 1	
tW(L)	Clear, Set	25			ns	Figure 2	
	Data Setup Time — HIGH	20			ns	Figure 1	V _{CC} = 5.0 V
t _S	LOW	20			ns	Figure 1	
th	Hold Time	5.0			ns	Figure 1	

Flip-Flop JK:

Circuito interno



Flip-Flop JK:

Ex.: 74LS76:

LOGIC SYMBOL

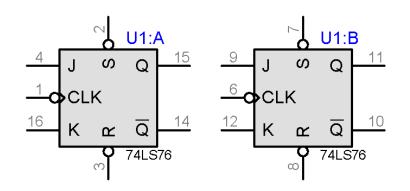
 $V_{CC} = PIN 5$ GND = PIN 13

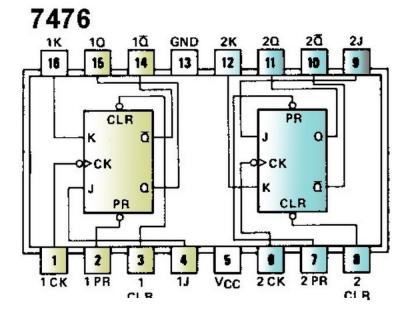
MODE SELECT – TRUTH TABLE

OPERATING		INP	OUTPUTS			
MODE	\overline{S}_D	\overline{C}_D	J	K	Q	Q
Set	L	Н	Х	Х	Н	L
Reset (Clear)	Н	L	Х	Х	L	Н
*Undetermined	L	L	Х	Х	Н	Н
Toggle	Н	Н	h	h	\overline{q}	q
Load "0" (Reset)	Н	Н	I	h	L	Н
Load "1" (Set)	Н	Н	h	I	Н	L
Hold	Н	Н	I	ĺ	q	q

* Both outputs will be HIGH while both \overline{S}_D and \overline{C}_D are LOW, but the output states are unpredictable if \overline{S}_D and \overline{C}_D go HIGH simultaneously.

H, h = HIGH Voltage Level


L, I = LOW Voltage Level

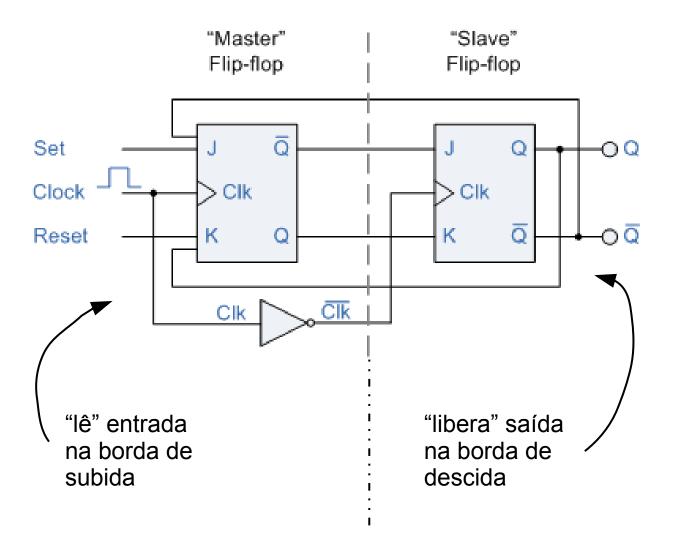

X = Immaterial

I, h (q) = Lower case letters indicate the state of the referenced input (or output) one setup time prior to the HIGH-to-LOW clock transition

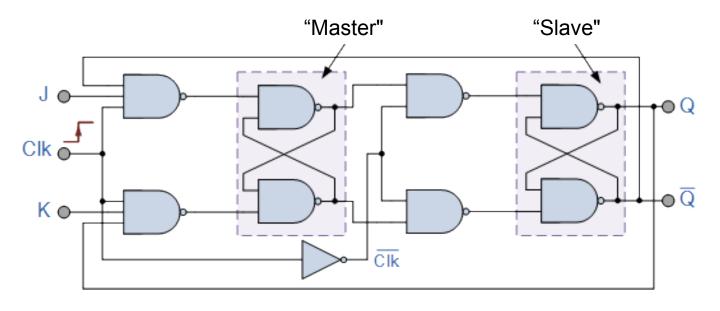
Dados: On Semiconductor (Division of Motorola; http://onsemi.com)

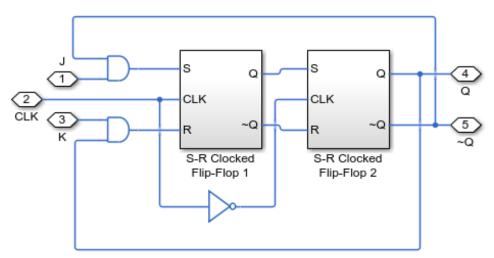
FF-JK: 74LS76

AC CHARACTERISTICS (TA = 25°C, VCC = 5.0 V)


		Limits		Limits			
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions	
f _{MAX}	Maximum Clock Frequency	30	45		MHz	1200 - 7 - 2 - 2	
t _{PLH}	Clock Cloor Set to Output		15	20	ns	$V_{CC} = 5.0 \text{ V}$ $C_L = 15 \text{ pF}$	
t _{PHL}	Clock, Clear, Set to Output		15	20	ns		

AC SETUP REQUIREMENTS (TA = 25°C)


			Limits		Limits			
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions		
t _W	Clock Pulse Width High	20			ns			
t _W	Clear Set Pulse Width	25			ns	V F O V		
ts	Setup Time	20			ns	V _{CC} = 5.0 V		
th	Hold Time	0			ns			



FF RS MS (Master-Slave)

FF JK MS (Master Slave)

Atenção: 74LS76 ≠ 7476!

SN74LS76A

Dual JK Flip-Flopwith Set and Clear

The SN74LS76A offers individual J, K, Clock Pulse, Direct Set and Direct Clear inputs. These dual flip-flops are designed so that when the clock goes HIGH, the inputs are enabled and data will be accepted. The Logic Level of the J and K inputs will perform according to the Truth Table as long as minimum set-up times are observed. Input data is transferred to the outputs on the HIGH-to-LOW clock transitions.

'LS76A FUNCTION TABLE

	IN	OUT	PUTS			
PRE	CLR	CLK	J	K	a	ā
L	Н	×	X	Х	Н	L
н	L	×	X	X	L	Н
L	L	×	X	X	H [†]	нţ
н	н	1	L	L	a_0	$\overline{\alpha}_0$
н	Н	1	Н	L	н	L
н	Н	1	L	Н	L	н
н	Н	1	Н	Н	TOG	GLE
н	Н	Н	X	X	α_0	$\overline{\alpha}_0$

Revised July 2001

September 1986

DM7476

Dual Master-Slave J-K Flip-Flops with Clear, Preset, and Complementary Outputs

'76
FUNCTION TABLE

	IN	OUT	PUTS			
PRE	CLR	CLK	J	K	Q	ā
L	Н	X	X	X	Н	L
н	L	×	X	×	L L	н
L	L	X	X	X	Нţ	нt
н	Н	л.	L	L	α ₀	$\overline{\alpha}_0$
н	Н	1	H	L	н	L
н	Н	л.	L	Н	L	н
н	Н	工	Н	н	TOGGLE	

[†] This configuration is nonstable; that is, it will not persist when either preset or clear returns to its inactive (high) level.

FAIRCHILD SEMICONDUCTORIM