Circuitos Digitais I Eletrônica Digital Combinacional

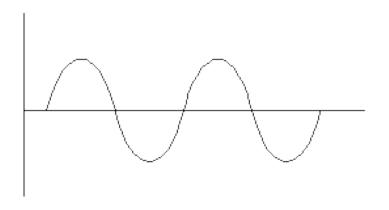
Fernando Passold, Dr. Eng.

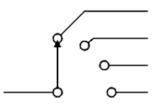
Profesor Titular III

Engenharia Elétrica

E-mail: fpassold@upf.br

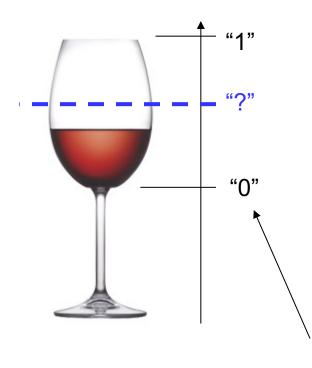
- Sistemas Numéricos
 - Códigos Digitais
 - Sistemas numéricos mais utilizados
 - □ Formação dos sistemas numéricos
 - □ Conversão entre diferentes bases numéricas
 - Otros códigos binários (Gray, ASCII)
 - Números binários (inteiros) com sinal
 - Notação con sinal, complemento 1 y 2.
 - Soma e subtração em complemento 2
- Álgebra de Boole
 - Portas Lógicas básicas (tabela verdade, símbolo, equações)
 - □ Análises
 - Propriedades de Álgebra de Boole
 - Minimização de funções algébricas (e de circuitos combinacionais digitais – 1ª parte)


Mundo Digital


Ligado Verdade Existe "1"

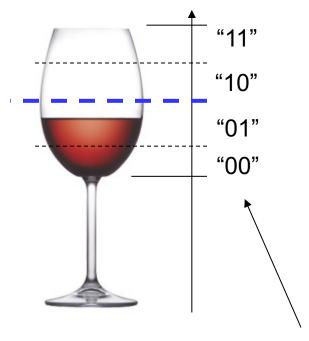
Mundo Analógico

Semáforo



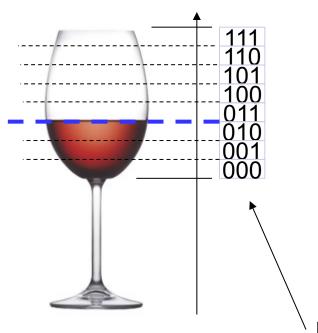
valores discretos

Infinitos estados; Qualquer valor;


Valor en qualquer instante de tempo.

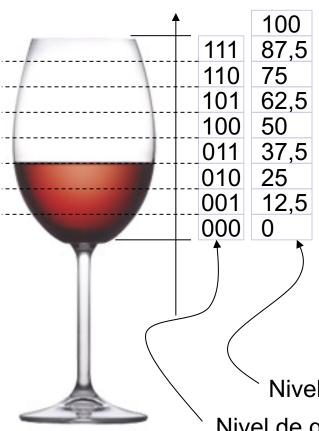
Estados binários: "0" ou "1":

Note: usando apenas 1 bit!


Estados binários: "0" ou "1":

- Proceso de Digitalização de Sinais:
- Problemas de Quantização y Codificação

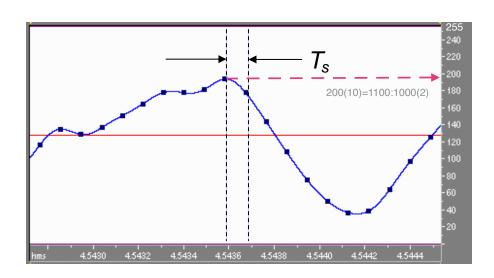
Note: usando 2 bits!


Estados binários: "0" ou "1":

- 3 bits → 2³ = 8 valores diferentes;
- Faixa de excursão: 0 ~ 100%:
- Escala de quantização, ou "resolução": 100/8 = 12,5

Note: usando 3 bits!

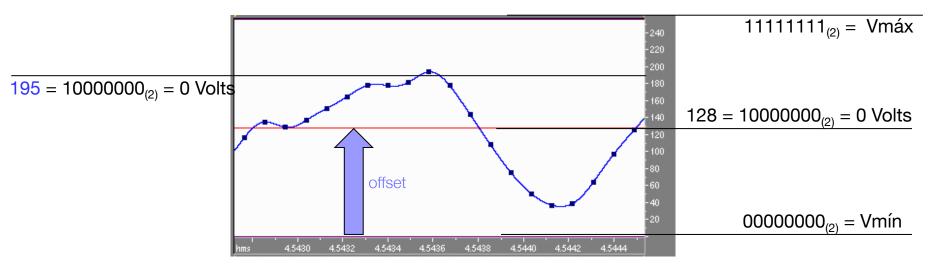
Estados binários: "0" ou "1":


- 3 bits → 2^3 = 8 valores diferentes;
- Faixa de excursão: 0 ~ 100%:
- Escala de quantização, ou "resolução": 100/8 = 12,5
- Se o valor real é 35 → erro de: -10 o +2,5 (depende do nivel de decisão).

Nivel de decisão

Nivel de quantização

- Como quantizar valores de tensão negativos ?
 - □ Também existem várias formas.
- O exemplo seguinte mostra o caso para arquivos digitais de aúdio em formato *.WAV com 8 bits:

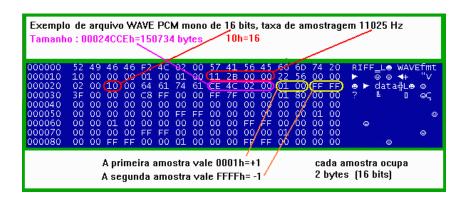


Note: o sinal é "fatiado" (amostrado ou discretizado) no tempo.

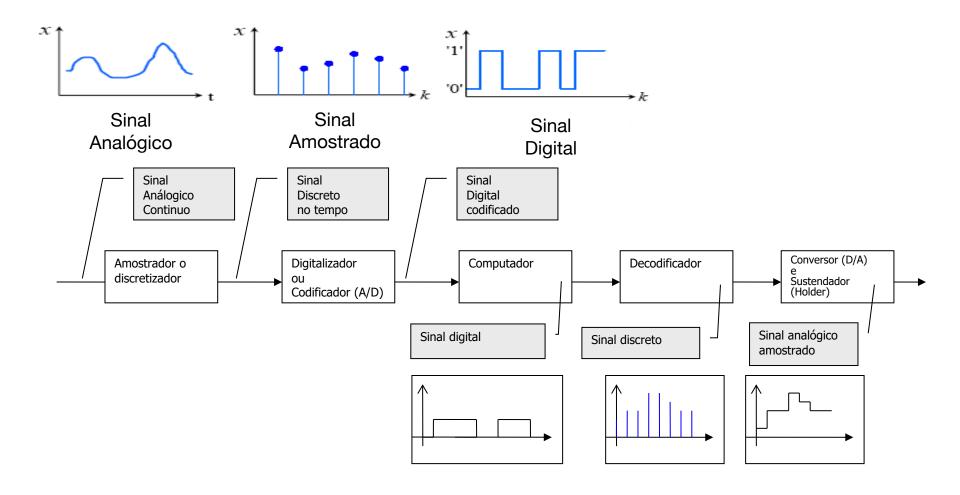
T_s: período de amostragem.

Obs.: O teorema de amostragem de Nyquist ou Shanon determina valores adequados para T_s (não estudado nesta disciplina, faltam fundamentos de Laplace e Diagramas Espectrais).

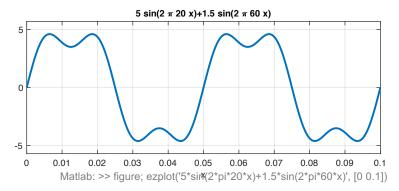
- O eixo vertical da figura é graduado no valor das amostras quantizadas com 8 bits : 0 a 255 (2^8).
- Note que o eixo de tensão, 0 Volts, sofre um "offset" (deslocamento) para o código (número): 128.
 - Pode-se assim representar valores negativos de tensão sem necesidade de usar código binário com sinal.
 A forma de onda quantizada acima, no formato decimal é :
 118,135,130,138,151,165,179,179,182,195,179,144,109,78,51,37,39,62,97,123. (← unsigned char em "C")
- O que representa os seguintes valores quantizados de tensão (em Volts), supondo que Vmáx=255 Volt e que Vmín= Volts:
 - -10,+7,+2,+10,+23,+37,+51,+51,+54,+67,+51,+16,-19,-50,-77,-91,-89,-66,-31,-5 (Volts)

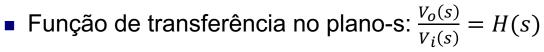

Isto é: 255₍₁₀₎ = FFh → 255 Volts Cada "1" → 1 Volt, mas... Não esquecer "offset", então:

Arquivo de áudio digital PCM em formato *.WAV de 16 bits

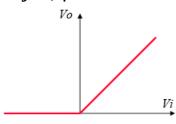

- Um arquivo de áudio digital PCM no formato *.WAV de 16 bits usa condificação com sinalcomplemento de 2.
- Valores positivos são codificados de 0000h=0 até 7FFFh=+32767 e valores negativos são codificados de FFFFh=-1 até 8001h=-32767. O zero é codificado como: 0000H=0.
- A primera figura representa esta codificação (eixo vertical):
- A segunda figura representa a parte inicial de um arquivo *.WAV de 16 bits.

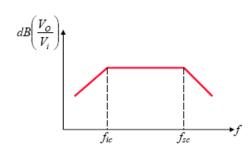
Obs.: Cada Conjunto de 8-bits => 1 byte.


Digitalização de um sinal...


Sinais Contínuos x Discretos

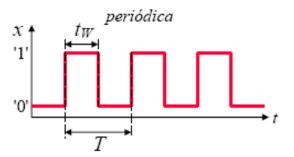
Sinal Analógico:

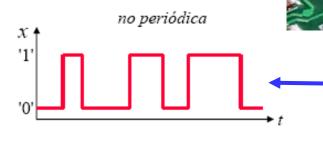

 \Box Ex.: $y(t) = 5\sin(2\pi 20t) + 1, 5\sin(2\pi 60t)$



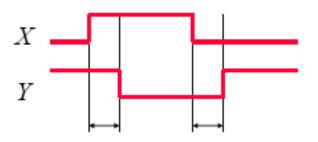
- Eletrônica analógica: transístores na faixa linear, β.
- Modelo matemático (forma de caracterizar):
 - Função transferência: $V_o(t) = f(V_i(t))$
 - Equação diferencial (modelo do circuito).

■ Resposta em frequência: |*H*(*jw*)|



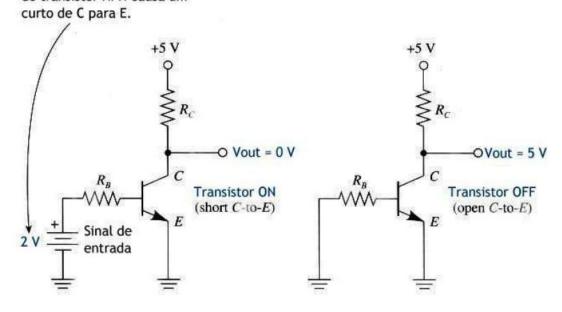

→ Vo(t)

Sinais Contínuos x Discretos


Sinal digital (binário): trem de pulsos:

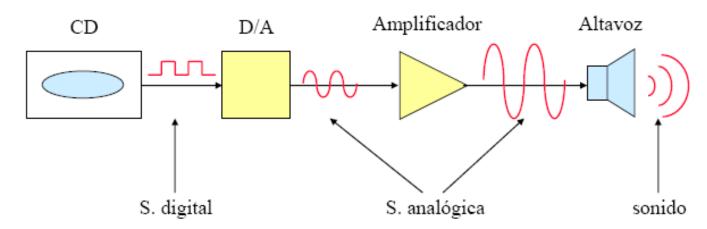
- Transistor → interruptor (corte/saturação)
- Caracterização:
 - □ Tabelas verdade
 - Diagramas de transição

$$X - \bigvee \sim Y$$



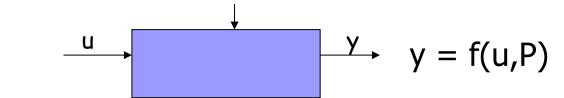
Integrated Circuits

Cada trilha


Uma tensão positva na base do transistor NPN causa um

- 1. Em um transistor PNP, se uma tensão positiva for aplicada entre sua base e o emissor, a junção coletor-emissor torna-se um circuito fechado (pode-se dizer que o "transistor foi ligado" ou que está "saturado").
- 2. Aplicar uma tensão negativa ou nula (0 V) entre a base e o emissor, abre a junção coletor-emissor (pode-se dizer que o "transistor foi desligado" ou que está em estado de "corte").

Sistema misto (analógico-digital)


- Circuitos de conversão:
 - □ Conversores A/D e D/A.
- Exemplo:
 - □ Reprodutor de CD
 - □ Placa de áudio de PC

Sistemas Digitais.

A teoria de Sistemas permite descrever um sistema atravéz de diagramas, o que permite ver suas diferentes partes, para formular um modelo matemático que relaciona 3 tipos de variables: entradas, saídas y perturbações.

 No caso de Sistemas Digitais, sistemas criados pelo homem, os modelos se aproximam bastante mais que em outros sistemas físicos reais.

1. Sistemas digitais são generalmente mais fáceis de projectar.

□ Porque os circuitos utilizados são circuitos de comutação (0 ≥ 1), onde o importante não é tratar de forma exata os valores de tensão e corrente (como em eletrônica analógica), mas apenas a faixa que alcançan (nível lógico "Alto" ou "Baixo": "HIGH" or "LÓW").

■ 2. Guardar (estocar) informação é (bem) mas fácil.

□ Isso é possível graças a circuitos de comutação especiais (biestáveis) que podem guardar informação e mantê-las por tanto tempo quanto seja necessário (sistemas digitais sequenciais: digitiais II). Em alguns casos, necessitando energia (memórias voláteis), em outros nem isso.

3. Exatidão e precisão melhores.

□ Sistemas digitaiss podem manipular tantos digitos de precisão cuanto se necessite simplemente se adicionando mais circuitos de comutação (aumentando os bits). Em sistemas analógicos, a precisão está geralmente limitada a 3 ou 4 dígitos porque os valores de tensão e corrente dependen diretamente (da qualidade e) dos componentes do circuito e estos ainda são afetados por perturbações aleatórias (ruído, temperatura → "drift").

10

Sistemas numéricos binarios mais usados:

0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
binário octal															
	decimal														
	hexadecimal														

- Base binária: 2 símbolos: "0" e "1"
- Base decimal: 10 símbolos: 0, 1, 2, 3, 4, 5, 6, 7, 8 e 9.
- Base octal: 8 símbolos: 0, 1, 2, 3, 4, 5, 6, 7.
- Base hexadecimal: 16 símbolos: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.

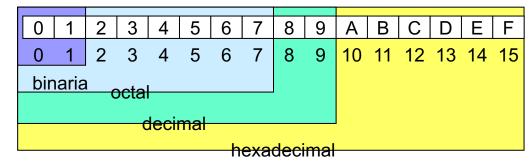
Formação de um sistema numérico

0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
bina	binaria octal														
	decimal														
	hexadecimal														

$$N_b = a_{m-1} \times b^{m-1} + \dots + a_0 \times b^0 + a_{-1} \times b^{-1} + \dots + a_{-n} \times b^{-n}$$

$$N_b = \sum_{i=-n}^{m-1} a_i \times b^i$$

Onde:


 N_b = número na base deseada;

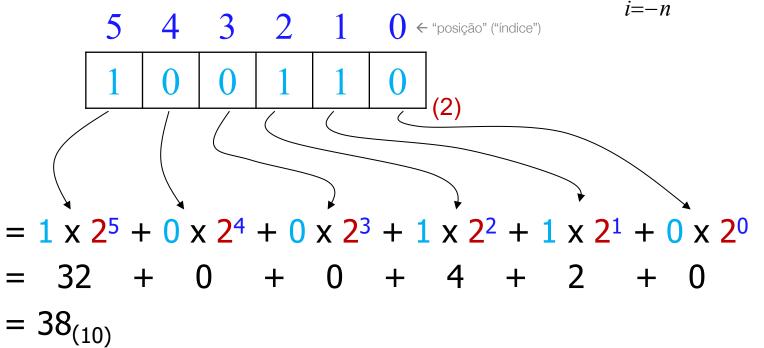
a = símbolo que compõe o número na base desejada;

m e n = exponentes, índices, ou "posição" do símbolo dentro do número que está sendo formando.

M

Formação de um sistema numérico

$$N_b = a_{m-1} \times b^{m-1} + \dots + a_0 \times b^0 + a_{-1} \times b^{-1} + \dots + a_{-n} \times b^{-n}$$

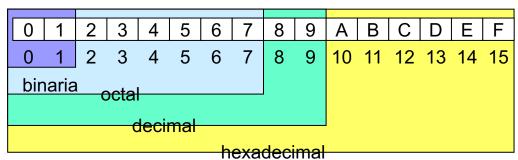

$$\mathbf{E}\mathbf{x_1}$$
)1042₍₁₀₎ = 1×10³ + 4×10¹ + 2×10⁰

Ex₂)
$$176_{(8)} = 1 \times 8^2 + 7 \times 8^1 + 6 \times 8^0$$

= $64 + 56 + 6$
= 126

M

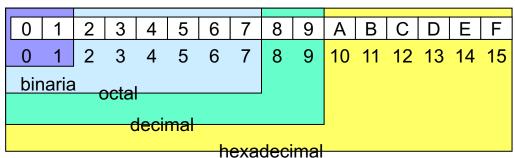
Formação de um sistema numérico


■ Ex₃: 100110 $_2 \rightarrow$? $_{10}$ Utilizando a equação geral: $N_b = \sum_{i=-n}^{m-1} a_i \times b^i$

10

Formação de um sistema numérico

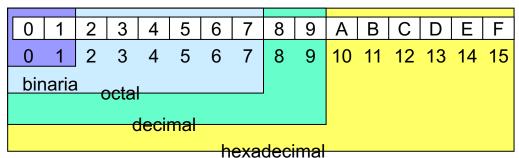
$$N_b = \sum_{i=-n}^{m-1} a_i \times b^i$$



■ Ex₄:

Formação de um sistema numérico

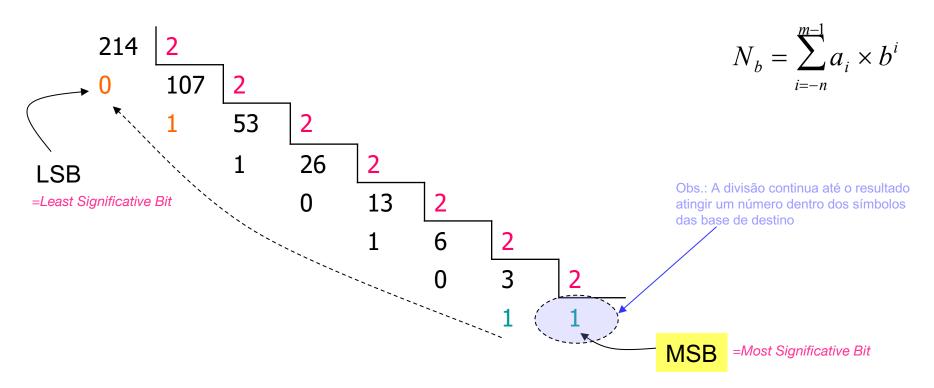
$$N_b = \sum_{i=-n}^{m-1} a_i \times b^i$$



- $Ex_{5:} 453_{(5)} = ?$
- $Ex_{6:}$ 3456H = 3456₍₁₆₎ = ?₍₁₀₎ ← unsigned char a=0x3456;

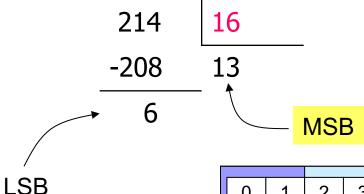
Formação de um sistema numérico

$$N_b = \sum_{i=-n}^{m-1} a_i \times b^i$$



- $Ex_{5:} 453_{(5)} = ?$
- $Ex_{6:}$ 3456H = 3456₍₁₆₎ = ?₍₁₀₎ ← unsigned char a=0x3456;

Resposta: 13398₍₁₀₎


Método da divisão:

$$\Box Ex_7: 214_{(10)} = ?_{(2)} = 11010110_{(2)}$$

Método de la división:

$$\Box Ex_8: 214_{(10)} = ?_{(16)} = D6H$$

0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Ε	F
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
binaria octal															
decimal															
hexadecimal															

$$\blacksquare$$
 Ex₉: 117₍₁₀₎ = ?₍₅₎ = 432₍₅₎

- Outro método: por aproximações sucessivas...
- **Exemplo:** $113_{(10)} = ?_{(2)}$

Note:

$$2^{4} = 16$$
 $2^{5} = 32$
 $2^{6} = 64$
 $2^{7} = 128$
 $113 - 2^{6} = 49$
 $49 - 2^{5} = 17$
 $17 - 2^{4} = 1$
 1×2^{0}

6	5	4	3	2	1	0
1	1	1	0	0	0	1

=1x2^2+1x2^0 = 4 + 1 = 5

■ De binário à octal

De octal à binário

$$= \frac{5}{101} \frac{2}{010} \frac{7}{111} \frac{3}{011}_{(2)}^{(8)}$$

De binario à hexadecimal

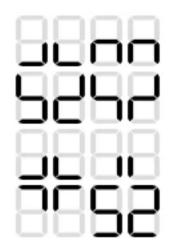
$$= D 7 E 7 5_{(16)}$$

Note: cada conjunto de 3 bits → 1 símbolo octal; cada conjunto de 4 bits → 1 símbolo hexadecimal.

Código BCD (Binary Code Decimal)

Usa sempre 4 bits para representar os números: 0,1,2, ..., 8,9

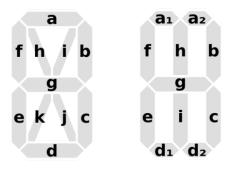
BCD	decimal	BCD	decimal
0000	0	0101	5
0001	1	0110	6
0010	2	0111	7
0011	3	1000	8
0100	4	1001	9

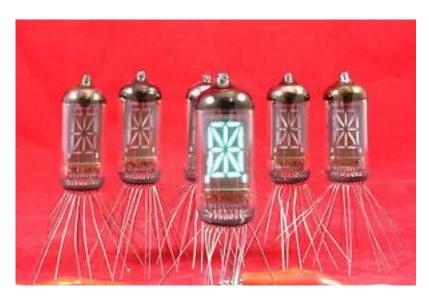

7 Segments Display

Código BCD (Binary code decimal)

E x_1 : Número $137_{(10)} = ?_{(2,BCD)}$

$$137_{(10)} =$$
 1000 1001 (binário)
 $137_{(10)} =$ 0001 0011 0111 (BCD) *
 $\downarrow \qquad \downarrow \qquad \downarrow$
1 3 7

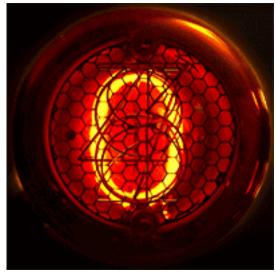




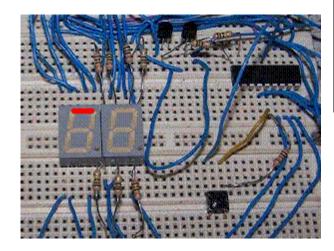
^{*} Note que o código BCD exigiu 12 bits (dígitos), Enquanto que em binário puro teriam sido "gastos" soment 8 bits para representar este número.

Outros Displays


■ 11 segmentos:



■ 14 segmentos:



Outros usos para Displays:

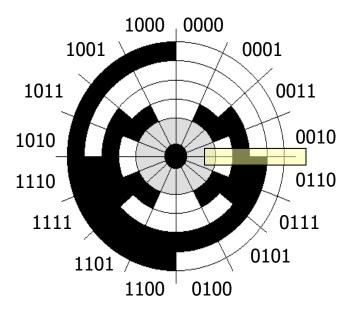
RBCDEF6HIJ KLMNOPQRS TUVWXYZ!? 1234567890

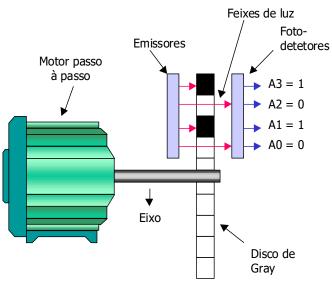
Códigos não ponderados.

Código excesso-3: valor + 3

Propiedade: seu complemento 9 é o mesmo como seu complemento lógico.

Ex-3	decimal	Ex-3	decimal		
0011	0	1100	9		
0100	1	1011	8		
0101	2	1010	7		
0110	3	1001	6		
0111	4	1000	5		

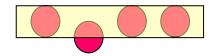

Código Gray


 Código Gray: clase especial de códigos de "distância um".

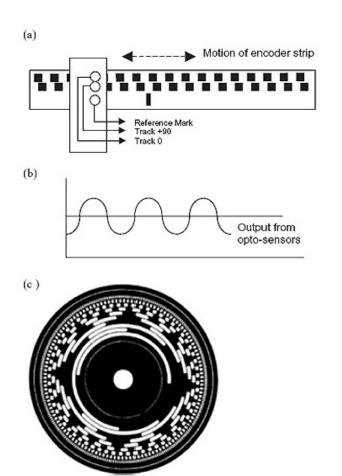
"Distância um": diferença de um único bit com a palabra código próximo ou adjacente independiente da direção.

<u>Código gray</u>	<u>decimal</u>			
000	0			
001	1			
011	2			
010	3			
110	4			
111	5			
101	6			
100	7			

Disco Gray:



Repare a seqüência:


Ref	Gray	Dec	Bin	Disco Binário:
0	0000	0	0000	Disco Billario.
1	0001	1	0001	1111 0000
2	0011	3	0010	1110 0000 0001
3	0010	2	0011	1110
4	0110	6	0100	1101 0010
5	0111	7	0101	
6	0101	5	0110	1100 0011
7	0100	6	0111	1100
8	1100	12	1000	1011 0100
9	1101	13	1001	
10	1111	15	1010	1010 0101
11	1110	14	1011	0110
12	1010	10	1100	1001
13	1011	11	1101	1000 0111
14	1001	9	1110	
15	1000	8	1111	

Note o **código Gray**: entre uma variação e outra do código, **somente um bit se altera**. Evita erros de leitura se alguns dos foto-detectores se encontra desalinhado frente a seus "companheiros":

Exemplo de Uso de Código Gray

Encoder absoluto: sensor de posição angular!

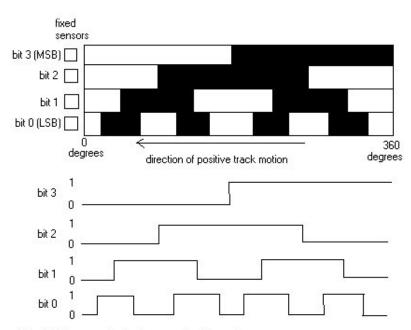
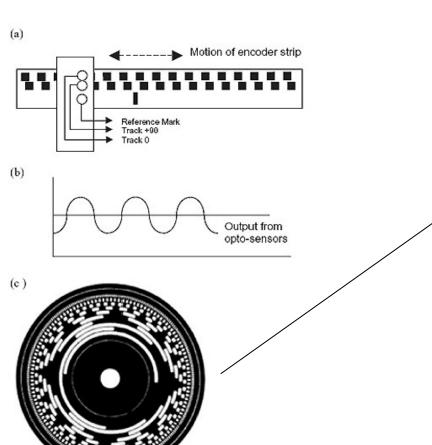
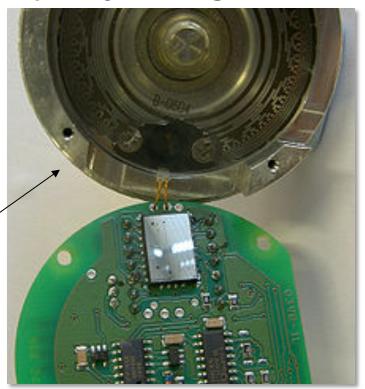
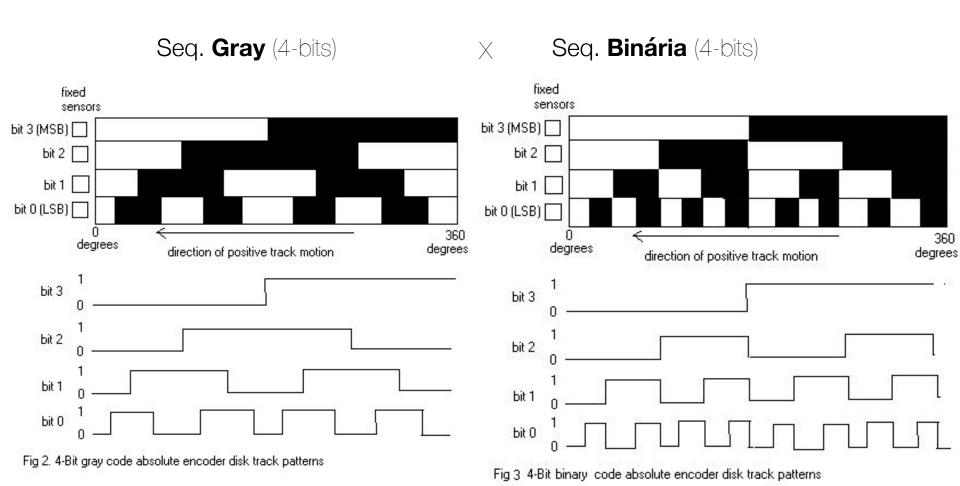
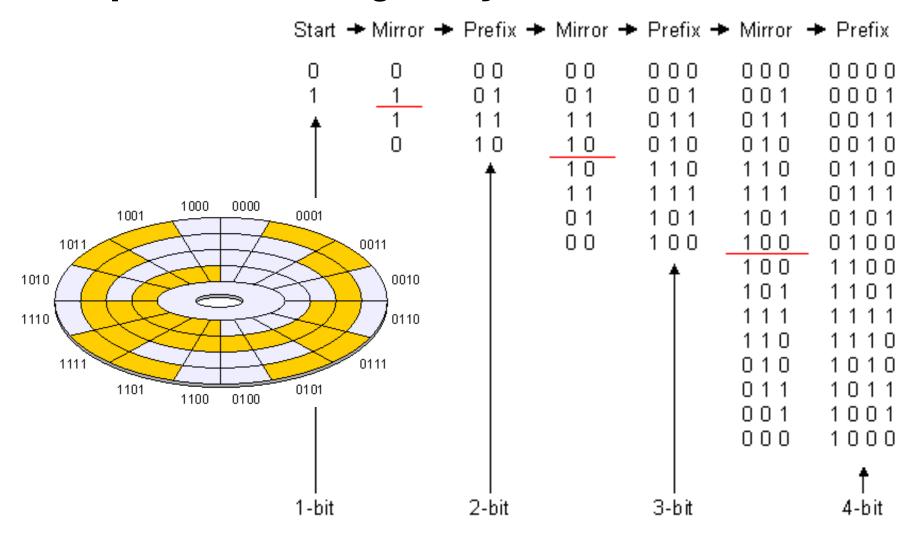




Fig 2. 4-Bit gray code absolute encoder disk track patterns

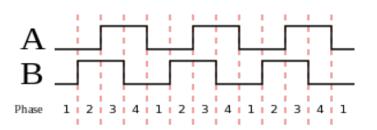
Exemplo de Uso de Código Gray


Encoder absoluto: sensor de posição angular!

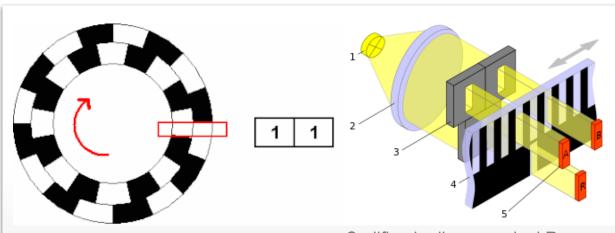
Um codificador rotativo absoluto de código Gray com 13 trilhas. No topo podem ser vistos o invólucro, o disco óptico e a fonte de luz; na parte inferior pode ser visto o elemento sensor e os componentes de suporte.


Código Binário:: Não é Encoder Absoluto!

Menos erros A cada passo: 1 bit apenas varia de estado!


"Saltos grandes" => + erros

Sequência do Código Gray:



Encoder Absoluto x Encoder Relativo

Duas ondas quadradas em quadratura. A direção do movimento é indicada pelo sinal da diferença de fase A-B que, neste caso, é negativa porque A segue B.

Codificador rotativo, com estados dos sinais A/B correspondentes mostrados à direita

Codificador linear; o sinal R (index) indica que o codificador está localizado em sua posição de referência.

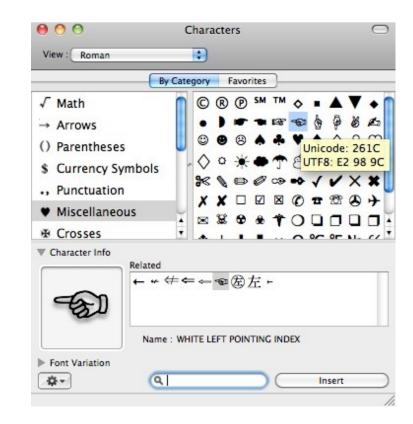
w

Código ASCII

```
32:
           33:
                                35:
                                                    37:
                                                              38:
                                                                        39:
                     34:
                                          36:
                                                                                   40:
                                                                                             41:
 42:
           43:
                                          46:
                                                                        49:
                               45:
                                                              48:
                                                                                   50:
                     44:
 52:
           53:
                     54:
                                55:
                                          56:
                                               8
                                                              58:
                                                                        59:
                                                                                   60:
                                                                                             61:
 62:
           63:
                               65:
                                                              68:
                                                                                   70:
                     64:
                          Q
                                          66:
 72:
      Н
           73:
                                75:
                                    K
                                                              78:
                                                                             0
                                                                                   80:
                     74:
                                          76:
                                                                   N
                                                                         79:
                                                                                       P
                                                                                             81:
 82:
                               85:
           83:
                     84:
                                    U
                                          86:
                                               ۷
                                                    87:
                                                              88:
                                                                        89:
                                                                                   90:
 92:
           93:
                     94:
                               95:
                                          96:
                                                              98:
                                                                                 100:
                                                                                            101:
102:
          103:
                    104:
                              105:
                                         106:
                                                             108:
                                                                       109:
                                                                                 110:
112:
                              115:
                                        116:
                                                             118:
                                                                       119:
                                                                                 120:
          113:
                                                                             ü
                    124:
                              125:
                                                   127:
                                                                       129:
                                                                                 130:
122:
          123:
                                         126:
                                                             128:
                                                                                            131:
132:
          133:
                    134:
                              135:
                                        136:
                                                   137:
                                                             138:
                                                                       139:
                                                                                 140:
142:
                    144:
                                                   147:
                                                             148:
                                                                       149:
                                                                                 150:
                                         146:
152:
                                                   157:
                                                             158:
                                                                       159:
                                                                                 160:
          153:
                    154:
                              155:
                                         156:
                                                                                            161:
162:
                                                             168:
                    164:
                              165:
                                         166:
                                                   167:
                                                                       169:
                                                                                 170:
172:
                    174:
                              175:
                                        176:
                                                   177:
                                                             178:
                                                                       179:
                                                                                 180:
                                                                                            181:
182:
          183:
                    184:
                              185:
                                        186:
                                                   187:
                                                             188:
                                                                       189:
                                                                                 190:
                                                                                            191:
                          0
                                                                              ¢
192:
          193:
                    194:
                              195:
                                                   197:
                                                             198:
                                                                       199:
                                                                                 200:
                                        196:
                                                                                            201:
202:
          203:
                                                                       209:
                    204:
                              205:
                                        206:
                                                             208:
                                                                                 210:
212:
                                                             218:
                                                                       219:
                    214:
                                        216:
                              225:
                                        226:
                                                                       229:
                                                                                 230:
          223:
                    224:
                                                             228:
                                                                                            231 :
232:
          233:
                    234:
                          û
                              235:
                                    Ù
                                        236:
                                              ý
                                                   237:
                                                             238:
                                                                       239:
                                                                                 240:
                Ú
                                                                                            241:
242:
          243:
                              245:
                                                                       249:
                                                                                 250:
                                        246:
                                                             248:
252:
          253:
                    254:
```

ascii.cpp (gera tabela ASCII):

```
// Tabela ASCII
// Fernando Passsold, 05/09/2001
#include <stdio.h>
// #include <stdlib.h>
void main() {
   int codigo = 32, coluna=1, linha=1, key, aux;
   for (codigo=32; codigo<256; codigo++) {</pre>
      printf("%3d: ",codigo);
      fputchar(codigo);
      coluna++;
      if (coluna<11){
            printf(" ");
      }
      else {
        printf("\n");
            coluna=1;
            linha++;
            if (linha>24){
              // espera uma tecla ser apertada
              while ( (key = getchar()) != '\n' )
                 printf("%c",key);
            linha=1;
```


Código UTF-8:

- UTF-8 é uma codificação de caracteres de largura variável usada para comunicação eletrônica. Definido pelo padrão Unicode, o nome é derivado do formato de transformação Unicode (ou conjunto de caracteres codificados universal) 8 bits.
- O UTF-8 é capaz de codificar todos os 1.112.064 códigos de caracteres válidos em Unicode usando um a quatro bytes (8 bits). Os pontos de código com valores numéricos mais baixos, que tendem a ocorrer com mais frequência, são codificados usando menos bytes. Ele foi projetado para compatibilidade com versões anteriores de ASCII: os primeiros 128 (=2^7) caracteres de Unicode, correspondem com o código ASCII, são codificados usando um único byte com o mesmo valor binário de ASCII, de modo que um texto ASCII válido é também um código UTF-8 válido. Os bytes ASCII não conseguem codificar caracteres não ASCII do UTF-8, mas UTF-8 é seguro para uso na maioria das linguagens de programação e de documento que interpretam caracteres ASCII de uma maneira especial, como "/" (barra) em nomes de arquivos, "\" (barra invertida) em sequências de escape e "%" em comandos "printf()".
- Os primeiros 128 caracteres (US-ASCII) precisam de um byte. Os próximos 1.920 caracteres precisam de dois bytes para codificar, o que abrange o restante de quase todos os alfabetos de escrita latina e também os alfabetos grego, cirílico, copta, armênio, hebraico, árabe, siríaco, Thaana e N'Ko, bem como os alfabetos diacrítico combinado Marcas. Três bytes são necessários para caracteres no resto do Plano Multilíngue Básico, que contém virtualmente todos os caracteres de uso comum, incluindo a maioria dos caracteres chineses, japoneses e coreanos. Quatro bytes são necessários para caracteres em outros planos de Unicode, que incluem caracteres CJK menos comuns, vários scripts históricos, símbolos matemáticos e emoji (símbolos pictográficos).

Exemplo: o código Unicode para "€" é U+20AC.

First code point	Last code point	Byte 1	Byte 2	Byte 3	Byte 4
U+0000	U+007F	0xxxxxxx			
U+0080	U+07FF	110xxxxx	10xxxxxx		
U+0800	U+FFFF	1110xxxx	10xxxxxx	10xxxxxx	
U+10000	U+10FFFF	11110xxx	10xxxxxx	10xxxxxx	10xxxxx x

100

Notações binárias: números inteiros com sinal.

- Notação Sinal-magnitude
- Complemento a 1
- Complemento a 2
- Sigal-magnitude

Números inteiros binários (Notações)

Binário sem sinal	Decimal	Binário com sinal	Decimal?	Binário C1	Binário C2
0000	0	0000	+ 0!?	0000	0000
0001	1	0001	1	0001	0001
0010	2	0010	2	0010	0010
0011	3	0011	3	0011	0011
0100	4	0100	4	0100	0100
0101	5	0101	5	0101	0101
0110	6	0110	6	0110	0110
0111	7	0111	7	0111	0111
1000	8	1000	- 0 !?		
1001	9	1001	- 1	1110	1111
1010	10	1010	- 2	1101	1110
1011	11	1011	- 3	1100	1101
1100	12	1100	- 4	1011	1100
1101	13	1101	- 5	1010	1011
1110	14	1110	- 6	1001	1010
1111	15	1111	- 7	1000	1001
	Problemas:	\$1000 ♂			

Códigos de detecção e de correção de erros.

(transmissão digital de dados)

- □ A transmissão de dados por um canal, pode conter erros causados por interferências, ruído, etc.
- ☐ Os dados se corrompem.
- □ Existem alguns métodos para detectar e corrigir erros.
- □ O mais comum é acrescentar um bit extra na transmissão.

Detecção de erro com bit de paridade.

Obs: do inglês: Par = even Ímpar = odd

- Paridade par e paridade ímpar referem-se a modos de verificação de paridade de comunicação assíncrona.
- É o método mais simples para a detecção de erro.
- Acrescenta um bit adicional de paridade na transmissão.
- A paridade par acrescenta um bit extra em "1" se o conjunto de dados já tiver um número ímpar de bits "1" ou "0" se o número de bits "1" for par.
- A paridade ímpar faz o inverso.
- Exemplo:

7 bits de dados	Contagem de bits "1":	8 bits incluindo paridade		
7 bits de dados		Par (even)	Impar (odd)	
0000000	0	0000000	0000001	
1010001	3	10100011	10100010	
1101001	4	11010010	11010011	
1111111	7	11111111	11111110	