# Entendendo Root Locus A idéia aqui é usar comandos simples do Matlab para entender como o *root locus* é formado e qual a relaçao entre os pólos de malha-fechada e respostas temporais de um processo. Se sugere fortemente uma eventual revistida do material [Respostas Transitórias de Sistemas Lineares]() % G = tf(num,den) num=1; den=[1 10 0]; G = tf(num,den) G = 1 ---------- s^2 + 10 s Continuous-time transfer function. zpk(G) ans = 1 -------- s (s+10) Continuous-time zero/pole/gain model. root(den) {Undefined function 'root' for input arguments of type 'double'.} roots(den) ans = 0 -10 pole(G) ans = 0 -10 % ftmf=feedback(K*G, H, -1) ftmf=feedback(G, 1) ftmf = 1 -------------- s^2 + 10 s + 1 Continuous-time transfer function. pole(ftmf) ans = -9.899 -0.10102 ftmf=feedback(0.01*G, 1); pole(ftmf) ans = -9.999 -0.0010001 ftmf=feedback(5*G, 1); pole(ftmf) ans = -9.4721 -0.52786 ftmf=feedback(15*G, 1); pole(ftmf) ans = -8.1623 -1.8377 ftmf=feedback(25*G, 1); pole(ftmf) ans = -5 -5 ftmf=feedback(15*G, 1); pzmç pzmç  {Error: Invalid text character. Check for unsupported symbol, invisible character, or pasting of non-ASCII characters. } pzmap(G) hold on % "segura as pontas" pzmap(pole(ftmf)) {Error using pzmap (line 66) Wrong number of input arguments.} polesMF=pole(ftmf) polesMF = -8.1623 -1.8377 real(polesMF) ans = -8.1623 -1.8377 imag(polesMF) ans = 0 0 plot(real(polesMF),imag(polesMF),'r+') figure; step(ftmf) ftmf=feedback(25*G, 1); polesMF=pole(ftmf) polesMF = -5 -5 figure(1) plot(real(polesMF),imag(polesMF),'m+') title('Step (K=15)') figure; step(ftmf) title('Step (K=25)') save aula_26041024 diary off % ![rl_planta_teste_1](rl_planta_teste_1.png) title('Step (K=15)') title('Step (K=25)') % ![step_planta_teste_1_K15.png](step_planta_teste_1_K15.png) % ![step_planta_teste_1_K25.png](step_planta_teste_1_K25.png) ftmf=feedback(40*G, 1); polesMF=pole(ftmf) polesMF = -5 + 3.873i -5 - 3.873i figure(1); hold on plot(real(polesMF),imag(polesMF),'b+') % axis([xmin xman ymin ymax]) axis([-11 1 -5 5]) % ![rl_planta_teste_1_2.png](rl_planta_teste_1_2.png) 40 ans = 40 figure; step(ftmf) title('Step (K=40)') figure; step(ftmf) title('Step (K=40)') [Warning: Error occurred while executing the listener callback for event WindowMouseMotion defined for class matlab.ui.Figure: Invalid or deleted object. Error in matlab.graphics.shape.internal.PointDataTipController.dragOrientation] [Warning: Error occurred while executing the listener callback for event WindowMouseMotion defined for class matlab.ui.Figure: Invalid or deleted object. Error in matlab.graphics.shape.internal.PointDataTipController.dragOrientation] [Warning: Error occurred while executing the listener callback for event WindowMouseMotion defined for class matlab.ui.Figure: Invalid or deleted object. Error in matlab.graphics.shape.internal.PointDataTipController.dragOrientation] [Warning: Error occurred while executing the listener callback for event WindowMouseMotion defined for class matlab.ui.Figure: Invalid or deleted object. Error in matlab.graphics.shape.internal.PointDataTipController.dragOrientation] [Warning: Error occurred while executing the listener callback for event WindowMouseMotion defined for class matlab.ui.Figure: Invalid or deleted object. Error in matlab.graphics.shape.internal.PointDataTipController.dragOrientation] [Warning: Error occurred while executing the listener callback for event WindowMouseMotion defined for class matlab.ui.Figure: Invalid or deleted object. Error in matlab.graphics.shape.internal.PointDataTipController.dragOrientation] ftmf=feedback(150*G, 1); polesMF=pole(ftmf) polesMF = -5 + 11.18i -5 - 11.18i figure(1) plot(real(polesMF),imag(polesMF),'g+') axis([-11 1 -12 12]) axis equal % ![rl_planta_teste_1_3.png](rl_planta_teste_1_3.png) figure;step(ftmf) title('Step (K=150)') % ![step_planta_teste_1_K150.png](step_planta_teste_1_K150.png) save aula_26041024 diary off